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Abstract  

Nadler found a fixed point on product of metric spaces XxZ for mappings on XxZ  which are uniformly 

continuous and also contraction in the first variable . Fora improved Nadler’s result on larger class of spaces and 

for larger class of mappings. Tarafdar generalized the Banach contraction principle on a complete Hausdorff 

uniform space. In this paper we generalize results of Nadler as well as Fora on uniform spaces. In particular, 

fixed point techniques have been applied in engineering, game theory, and physics. The engineering applications 

of fixed point theorem are to find out the optimal performance and stability of linear and nonlinear filters, image 

restoration and image retrieval. 

 

 

I. Introduction : 
 A topological space X is said to have the 

fixed point property if every continuous function f : 

X  X has a fixed point.  

 The problem of whether the fixed point 

property (in short f.p.p.) is or is not necessary 

invariant under cartesian products is an old one 

(see [2] and [3] for its history). Bredon showed that  

the answer is negative for the category of polyhedra 

with the Shih condition . The f.p.p. is preserved 

when the maps f: XxZ   XxZ have special 

contraction properties . Nadler and Fora have 

proved results are in this direction.  

A. Nadler type results  

 Nadler proved two main results : 

A-1 Theorem : Let (X , d) be a metric space . Let 

Ai : X  X be a function with at least one fixed 

point ai for each i =1,2 ,----------,  and let A0 : X  

X be a contraction mapping with fixed point a0. If 

the sequence {Ai} converges uniformly to A0
 
, then 

the sequence {ai} converges to a0  

A-2 Theorem : Let (X, dx) be a complete metric 

space, let (Z, dz) be a metric  space with the f.p.p. 

and let f be a mapping from XxZ into XxZ. If f is 

uniformly continuous on XxZ and a contraction 

mapping in the first variable, then f has a fixed 

point.  

  We extend the class of complete 

metric spaces X to the class of complete Hausdorff 

uniform spaces and the class of metric spaces Z to 

the class of uniform spaces in which sequences are 

adequate. We prove : 

 

 

 

 

A-3 Theorem : Let (X ,u) be a complete Hausdorff 

uniform space, Z a uniform space in which 

sequences are adequate and which has the f.p.p. If f 

: XxZ XxZ  is a uniformly continuous mapping 

which is a contraction in the first variable , then f 

has a fixed point in  XxZ. 

Proof : Since f is contraction in the first variable, 

therefore for any z Z the mapping fz :  X X is a 

contraction on X. Here fz is defined as fz (x) = 1 f 

(x, z),  where 1 is the projection of  XxZ on Z along 

Z. 

           Let A
*
( u)={ :I} be the augmented 

associated family of pseudometrics for  u  on X, 

We construct a sequence tn (z) =  tn in X as follows 

:  

 Fora fixed x0 in X and for any z  Z 

 t0 = x0 , tn =1 f(tn-1, z) = fz (tn-1) =  
n

zf

(t0) ; n  1 

Let   I be  arbitrary . If m and n are positive  

integers with m > n then we have  

  (tn , tm) = (1 f(tn-1, z) , 1 f(tm-

1,( z)) 

   = 

  )(, 00 tfftf nm

z

n

z

n

z



  

     

    0, tft nm

zo

n 

   

   =    nmo

n
tt ,   

     ()
n
[ (t0,t1) 

+(t1,t2) +-----+(tm-n-1,tm-n)] 

    ()
n
   (t0,t1) [1+ 

+----+()
m-n-1

] 
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(t0 , t1) 

0 as, n 

Above inequality implies {tn} is a  -  Cauchy 

sequence (ie a Cauchy sequence in   topology). 

Since   I is arbitrary, {tn} is a  - Cauchy 

sequence . 

           Let Sp ={tn:n  p} for all positive integer p 

and let B= {Sp:p=1,2----} be the filter  basis. It is 

easy to see the filter basis B is Cauchy in the 

uniform space (X,u )  To see this we first note that 

the family {H( ,):I, >0} is a base for u

 .Now let H  u be an arbitrary 

entourage. Then there exists a v I and  >0) such 

that  H(v, ) H. Since {tn} is a v - Cauchy 

sequence in X, there exists a positive integer p such 

that v (tn , tm) <  for m  p, n  p this implied that     

SpxSp H(v, ). Thus given any Hu  we can find 

a Sp B such that SpxSp H .Hence B  is a Cauchy 

filter in (X ,u).Since (X, u) is complete and 

Housdorff, the Cauchy filter B = {Sp} converges to 

a unique point aX in the u topology (uniform 

topology induced by uniformity u). Thus u lim 

Sp=a. Now since fz is   - continuous for each I 

, it follows that fz is u continuous . 

 Hence fz(a) = fz (u lim Sp) = u lim fz 

(Sp) =u  lim Sp+1= a.Thus a is a fixed point of fz. 

Here a is unique fixed point of fz as if we assume b 

is another fixed point of fz such that a  b . Since 

(X, u ) is a Hausdorff space and a  b, there is an 

index  I such that  (a,b)  0. Since fz is a 

contraction on X, we have  

  (a,b)  =  (fz (a), fz (b))    (a, 

b) 

Which is absurd as 0 <  < 1 and  (a,b)  0. 

Hence a is unique fixed point of fz . 

 Let F : Z X be given by F (z) = a  the 

unique  fixed point of fz . Now let z0 Z and let {zi} 

be a sequence of points of Z which converges to z0. 

By the assumption of this theorem, the sequence 

{fzi} converges uniformly to fz0 and hence, by  

theorem A1, the sequence {F(zi)} converges to 

F(z0). Therefore F   is continuous on Z.  Next let G 

: Z  Z be the continuous mapping defined by  

G(z) = 2 f(F(z),z) for each z Z, where 2 is the 

projection of X x Z  on Z along X. Since Z has the 

f.p.p. there is a point pZ Such that G (p) =p. 

Therefore p=G(p) =2 f(F(p),p). It follows that 

(F(p),p) is a fixed point of f. This completes the 

proof of the theorem.  

A-4 Corollary : Let (X, u ) be  a complete 

Hausdorff uniform space and let Z a uniform space 

in which sequences are adequate and which have 

the f.p.p. If f: XxZ   XxZ is a mapping which is a 

contraction mapping in each variable separately 

then f has a fixed point in XxZ. 

 Here we note that Theorem A-2 also 

corollary of above Theorem A-3. 

 

B. Fora type results : 
 Fora’s improvements of Nadler’s 

results are based on the observation that in Nadler’s 

results , metric character of Z is not necessary, 

uniform continuity of f is too strong and 

contraction condition is sufficient even if it is 

available locally. Therefore Fora replaced X by a 

complete metric space, Z by any topological space, 

uniformly continuous f by a continuous f and f 

being contraction in the first variable by the 

condition that f is locally contraction in the first 

variable. We generalize    Fora’s result as follows: 

B-1 Theorem : Let (X, u ) be a complete Hausdorff 

uniform space, Z a topological space with the f.p.p., 

f: XxZ   XxZ be a locally contraction mapping in 

the first variable . If  f is continuous when the 

topology on X is given by any uniformly 

continuous pseudometric on X x Z , then f  has a 

fixed point. 

Proof : Let { : I}  be the collection of all 

uniformly  continuous pseudometrics on  X. Let 

x0X be fixed and for any z Z, we construct a 

sequence tn (z) = tn in X as follows: 

t0  =x0 , tn = 1 f (tn-1,z) ; n 1 

Step –I : {tn} is a Cauchy sequence in (X, u ) 
Since f is locally contraction in the first variable, 

for each  I  there exists  a real number   [0,1) 

such that  

 (1 f (tn-1, z) , 1f (tn , z))     (tn-1 , tn) 

or       (tn , tn+1)      (tn-1 , tn) 

Using triangular inequality , we find for m>n 

(tn, tm)   (tn , tn+1)  +  (tn+1 , tn+2)  + -------+ 

 (tm-1 , tm) 

     11   mnn

    (t0, 

t1)   

 = 
 











 

1

1 nmn

 (t0 , t1)   

 <









1

n

 (t0 , t1)   

Since n

 0 as n , this inequality shows that 

{tn} is a - Cauchy sequence(ie a  Cauchy 

sequence in -topology). Since I is arbitrary, 

{tn} is a - Cauchy sequence . 

          Let B ={Sp:pN}where Sp={tn:n p} be a 

Cauchy filter base in (X, u). To see this we first 
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note that the family, {H( ,):I, >0} is a base 

fo u as  A
*
(u ) = { : I}.  Now let Hu be an 

arbitrary entourage.Then there exist a v I and 

>0 such that H(v, ) H. Now since {tn} is a - 

Cauchy sequence in X, there exists a positive 

integer P such that v(tn, tm) < for all m p , n  p 

. This implies that  SpxSp  H  (v, ). Thus given 

any  H  u we can find a Sp B such that SpxSp  

H. Hence B  is a Cauchy filter in (X, u ) . Since (X, 

u)  is complete and Hausdorff, the Cauchy filter B  

= {Sp} converges to a point say tz in X.  

 Let mapping g : ZZ defined 

as  g(z) = 2 f(tz , z) where 2 is the projection of X 

x Z on Z along X. 

Step II : g : ZZ is continuous.  

Let zZ  and U be an open set containing g(z). 

Then f(tz , z)  XxU. Since f is continuous at (tz , 

z)when X is assigned the topology () in which  

A
*
( u ) implies  = for some I, there exists 

an open set G Z and a real number >0 such that  

 (tz , z) S(tz , ,) x G and  

 f{S(tz , , ) x G XxU  

Also f is locally contraction in the first variable . 

Therefore there exists an open set W, containing z 

and [ 0,1) such that  

   (1 f(x , v) , 1 f(x*,v))   (x 

, x*) 

for all x , x*X and all vW. 

Since m 0 as m, we all choose n  1 such 

that  

n
 < 

8


 

   














8/,

1

10 tt


and  (tz , tm) < 

8


 

for all m  n 

Since f(tn, z)  XxU and f is continuous at (tn , z) , 

there exists a basic open set  Un x Vn in X x Z  such 

that  

(tn , z)  Un xVn   , Un  S(
8


, tz,  ) , 

Vn  G W and f (Un xVn) XxU. 

Since f is continuous at (tn-1, z) and f(tn-1, z) UnxZ, 

there exists a basic open set Un-1 xVn-1 in XxZ  such 

that 

(tn-1, z)  Un-1 xVn-1, U n-1  S(
8


, tn-1 ,  ) , 

Vn-1 Vn  and f(Un-1 xVn-1) Un xZ. 

Continuing this way we construct sets Un ,Un-1 

,…,U0 ,Vn ,Vn-1,…,V0 such that, for 0 i  (n-1)  

(ti  , z)  Ui xVi  , Ui  S(
8


, ti , ) , 

Vi  Vi+1 and f (Ui xVi)  U i+1 x Z. 

It remains to show that g(V0)  U  : 

Let y  V0. Then from the above mention 

properties we have (t
/
0, y)  U0 xV0,  

Where t
/
0 = xo. Thus f(t

/
0 , y) U1xZ ie. , t

/
1 = 1 f(t

/
0 

, y) U1,  

consequently   (t
/
1 , t1) <

8


. 

Using the triangular inequality we have  

 (t
/
0 , t

/
1) = (t0 , t1

/
)  (t0 , t1) +  (t1 , t

/
1)  <  (t0 , 

t1)  +
8


. 

Since f(U1xV1) U2xZ and (t
/
1 , y)U1xV1 therefore 

f(t
/
1 , y)U2xZ  

ie t
/
2= 1 f(t

/
1 ,  y) U2. 

In this way we find the sequence t
/
n(y)= 

t
/
n,forwhich t

/
i= 1f(t

/
i-1, y) Ui; i=1,2,---, n. 

Moreover, t
/
n

 Un and Un S(
8


, tz, ) , therefore  

 (t
/
n
 
 , tz ) <

8


. 

Using the triangle inequality we find, for mn.  

 (t
/
n
 
 , tz)   (tz

 
, t

/
n) +  (t

/
n

 
, t

/
n+1) +----------+  

(t
/
m-1

 
 , t

/
m) 

 <
8


 +n  (t

/
0 , t

/
1) +----+m-1  (t

/
0 , t

/
1) 

 = 




1

n

  (t
/
0 , t

/
1) +

8


 

 <(




1

n

) ( (t
/
0 , t

/
1) +

8


)+

8


 

 <
8


+ 

8


= 

4


 

If ty = lim t
/
n , then the above inequality shows that 

 (ty , tz)  /4.Therefore  (ty , y)  S(, tz ,)  

 

and consequently f (ty , y)  XxU, ie. , g(y) = 1 f(ty 

, y) U. Therefore our claim is proved and  

 

hence g is continuous.  

 

Step –III : 1 f(tz, z) = tz 

 If possible , let u = 1 f(tz , z)  tz . 

Since the uniform space X is Hausdorff, there exists 

a pseudometric   on X such that  (u , tz)= >0. 

 Since f is continuous on XxZ and X is 

assigned the topology  (), we have open sets U 

and V such that 
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 (tz , z) U xV, U  S(
4


, tz , ) and    f (UxV)   S(

4


 , u , ) xZ. 

Since lim tn = tz, there is a natural number k 1 

such that tnU for all nk. Therefore  

f(tk , z)  S(
4


, u , ) x Z, ie tk+1 =1f ( tk , z) S(

4



, u , ). 

Also tk+1 U  S(
4


, tz, ).This contradicts the fact 

that (tz, u) = . Therefore  our 

assumption is false and consequently we have the 

required conclusion.  

  Now as in step II of the theorem 

B-1, g: ZZ is continuous. Since Z has the fixed 

point property, therefore there exist z0  Z such that 

g(z0) = z0. As in step-III above we have     

1 f(tz0 , z0) = tz0 . But z0  = g(zo) =2 f (tz0 , z0). 

Hence f (tz0 , z0)= (tz0 , z0 ) ie, (tz0 , z0)  is a fixed 

point of f. This completes the proof. 

        It is obvious that Theorem A-2 is a corollary 

to the above Theorem B-1 . We also get as a 

corollary to this Theorem the following result 

mentioned by Fora [4].  

B-2 Corollary : Let (X, d) be a complete metric 

space , Z be a topological space with the f.p.p. and 

f: XxZ   XxZ a continuous mapping. If f is a 

contraction in the first variable , then f  has a fixed 

point.  

 

References 
[1]   Bredon  G.: ‘Some examples of fixed point 

property’, Pacific J. Math.  

        38 (1971), 571-573 

[2]  Brown R.F. : ‘On some old problems of 

fixed point theory’, Rocky Mountain.  

      J. Math., 4 (1974), 3-14. 

[3]  Fadell E.R. : ‘Recent results in the fixed 

point theory of continuous maps,’  

        Bull. Amer. Math. Soc., 76 (1970), 10-29. 

[4]  Fora A.A. : ‘A fixed point theorem for 

product spaces’ pacific J. Math.  

       99 (1982), 327-335 

[5]  Husseni S.Y. : ‘The product of manifolds 

with f.p.p. need not have the 

       f.p.p.,’ Amer.J. 99 (1977) ,919-931. 

[6]  Lee Cheng-Ming : ‘A development of 

contraction mapping principles on      

     Hausdorff uniform spaces’, Trans. Amer. 

Math. Soc. (1977), 147-159. 

[7]  Nadler Jr. S.B. : ‘Sequence of contractions 

and fixed points’, Pacific.J. Math..  

      27 (1968), 579-585. 

[8]  Rhoades B.E. : ‘A Comparison of various 

definitions of contractive mappings’, 

      Trans. Amer.Math.Soc. 226 (1977), 257-

290. 

[9]  Tarafdar E.: ‘An approach to fixed point 

theorems in uniform spaces’,  

       Trans. Amer.Math. Soc. 191 (1974), 209-

225. 

    

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 


